wear in the barrel so my seating depths will, again, be at a known and proven setting. As explained in the ammunition segment, on a brand new chamber my bullets are seated farther into the case than what I want. After the first 200-300 rounds they are then right where I want them. All through the year I have been running experiments and noting behaviors and zeros, and the majority of that information, or at least the most reliable information, has come from barrels that are from 25 to 75 percent matured. Using this system, I could effectively shoot the same barrel more than once at Camp Perry. That, I think, is a big advantage.

BARREL CHOICE

[rifling styles]

The only assurance anyone has of barrel quality is purchasing from a known good barrel maker. That's going to be an individual who makes custom barrels. There are a few who deserve recommendation, but the one I take my business to is Gary Schneider. I use Schneiders in all my across the course, long range, and rimfires. All Schneider barrels are hand lapped stainless steel. I have won what I have won, with three exceptions, using a Schneider barrel. The three exceptions were using a Hart in my .308 for one early Camp Perry win, an Obermeyer for a Palma® win, using a Hart in my .308 for one early Camp Perry win, and an option, go the next step faster in my experience with these polygon barrels. My experience with these polygon barrels has been that they take less propellant to attain the same velocities as a conventional barrel. Comparing new barrels, it's approximately 1-2 full grains of powder. That's a good deal of difference, and definitely something to be aware of before working up a load in a new polygon barrel. Keep in mind that I am speaking from a lot of experience in using polygonally-rifled Schneider barrels and also am using the same chamber reamers, loading components, and conducting these tests in a known control environment. I mention those things because it otherwise is difficult to know how accurate other comparisons might be. I attribute the difference in powder charges to the greater efficiency of the polygonal rifling method since, for the same reasons mentioned earlier, the bore is allowing that much less gas blowby. The question, then, is not what you're not getting with a polygon, but what you're not losing. Burning less of the propellant to get the same thing is not at all bad. I have noticed an absence of the typical dark fouling streaks in the throat area common with conventional rifling, and believe this is also due to less gas blow by with the polygon. Barrel life should increase for most applications due to less concentration of hot gases directed at the barrel steel.

Additionally, seeing the commonplace dark streaks on either side of a land indicates to me that the barrel is not bearing in that area either. Considering their absence in a polygon barrel, I also have to believe that there is greater contact being made with the bullet in this configuration. That also somewhat explains the experience of polygon take less propellant, and points out a possibility that polygonal rifling might work that much better with a moly coated bullet.

All TUBB 2000s have polygonal rifling and we have been setting records with them.

[twist rate]

I have some hard-learned advice to share on twist rate selection. If there is any question, and an option, go the next step faster in home, to Raton (6500 feet), and to Bailey, Colorado (8000 feet). But at the 600 feet elevation in Ohio, the 9 twist cost me a win that year. The rifle would not shoot up to my standard. I remember one 300 yard string of 100-0s, and that said it all.

Now, several years later, I'm back to using 6mm's and I'm using a 1-8 twist to drive them. Using bullets suitable for High Power shooting, there will be no ill effects from going one turn faster than you think you might need. The rifle shot as well the next